Tuesday 31 October 2017

Definición Del Gráfico De Media Móvil


Media móvil Este ejemplo le enseña cómo calcular el promedio móvil de una serie de tiempo en Excel. Una gran ventaja se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, echemos un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón Análisis de datos Haga clic aquí para cargar el complemento Herramientas de análisis. 3. Seleccione Media móvil y haga clic en Aceptar. 4. Haga clic en el cuadro Rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Interval y escriba 6. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar un gráfico de estos valores. Explicación: dado que establecemos el intervalo en 6, el promedio móvil es el promedio de los 5 puntos de datos anteriores y el punto de datos actual. Como resultado, los picos y valles se suavizan. El gráfico muestra una tendencia creciente. Excel no puede calcular la media móvil para los primeros 5 puntos de datos porque no hay suficientes puntos de datos anteriores. 9. Repita los pasos 2 a 8 para el intervalo 2 y el intervalo 4. Conclusión: Cuanto mayor sea el intervalo, más se suavizarán los picos y los valles. Cuanto más pequeño sea el intervalo, más cerca estarán las medias móviles de los puntos de datos reales. Los datos de suavizado eliminan la variación aleatoria y muestran las tendencias y los componentes cíclicos Inherente a la recolección de datos tomados en el tiempo es alguna forma de variación aleatoria. Existen métodos para reducir la cancelación del efecto debido a la variación aleatoria. Una técnica de uso frecuente en la industria es suavizar. Esta técnica, cuando se aplica correctamente, revela más claramente la tendencia subyacente, los componentes estacionales y cíclicos. Existen dos grupos distintos de métodos de suavizado Métodos de promedio Métodos exponenciales de suavizado Tomar promedios es la forma más sencilla de suavizar los datos Primero investigaremos algunos métodos de promediación, como el promedio simple de todos los datos anteriores. Un gerente de un almacén quiere saber cuánto un proveedor típico ofrece en unidades de 1000 dólares. Se toma una muestra de 12 proveedores, al azar, obteniendo los siguientes resultados: La media o media calculada de los datos 10. El gestor decide usar esto como la estimación para el gasto de un proveedor típico. ¿Es esto una buena o mala estimación? El error cuadrático medio es una forma de juzgar qué tan bueno es un modelo Vamos a calcular el error cuadrático medio. La cantidad verdadera del error gastada menos la cantidad estimada. El error al cuadrado es el error anterior, al cuadrado. El SSE es la suma de los errores al cuadrado. El MSE es la media de los errores al cuadrado. Resultados de MSE por ejemplo Los resultados son: Errores y errores cuadrados La estimación 10 La pregunta surge: ¿podemos usar la media para pronosticar ingresos si sospechamos una tendencia? Un vistazo a la gráfica abajo muestra claramente que no debemos hacer esto. El promedio pesa todas las observaciones pasadas igualmente En resumen, declaramos que El promedio simple o la media de todas las observaciones pasadas es sólo una estimación útil para pronosticar cuando no hay tendencias. Si hay tendencias, utilice estimaciones diferentes que tengan en cuenta la tendencia. El promedio pesa todas las observaciones pasadas igualmente. Por ejemplo, el promedio de los valores 3, 4, 5 es 4. Sabemos, por supuesto, que un promedio se calcula sumando todos los valores y dividiendo la suma por el número de valores. Otra forma de calcular el promedio es añadiendo cada valor dividido por el número de valores, o 3/3 4/3 5/3 1 1.3333 1.6667 4. El multiplicador 1/3 se llama el peso. En general: barra frac fracción izquierda (frac derecha) x1 izquierda (frac derecha) x2,. ,, Izquierda (frac derecha) xn. El (izquierda (frac derecha)) son los pesos y, por supuesto, suman a 1.Choosing la mejor línea de tendencia para sus datos Cuando desea agregar una línea de tendencia a un gráfico en Microsoft Graph, puede elegir cualquiera de los seis diferentes Tipos de tendencia / regresión. El tipo de datos que tiene determina el tipo de línea de tendencia que debe utilizar. Confiabilidad de línea de tendencia Una línea de tendencia es más confiable cuando su valor R-cuadrado está en o cerca de 1. Cuando se ajusta una línea de tendencia a sus datos, Graph calcula automáticamente su valor R-cuadrado. Si lo desea, puede mostrar este valor en su gráfico. Una línea de tendencia lineal es una línea recta de mejor ajuste que se utiliza con conjuntos de datos lineales simples. Sus datos son lineales si el patrón en sus puntos de datos se asemeja a una línea. Una línea de tendencia lineal por lo general muestra que algo está aumentando o disminuyendo a un ritmo constante. En el ejemplo siguiente, una línea de tendencia lineal muestra claramente que las ventas de refrigeradores han aumentado constantemente durante un período de 13 años. Observe que el valor R-cuadrado es 0.9036, que es un buen ajuste de la línea a los datos. Una línea de tendencia logarítmica es una línea curva mejor ajustada que es más útil cuando la tasa de cambio en los datos aumenta o disminuye rápidamente y luego se nivela. Una línea de tendencia logarítmica puede usar valores negativos y / o positivos. El siguiente ejemplo usa una línea de tendencia logarítmica para ilustrar el crecimiento poblacional predicho de animales en un área de espacio fijo, donde la población nivelada como espacio para los animales disminuyó. Tenga en cuenta que el valor R-cuadrado es 0.9407, que es un ajuste relativamente bueno de la línea a los datos. Una línea de tendencia polinómica es una línea curva que se usa cuando los datos fluctúan. Es útil, por ejemplo, para analizar ganancias y pérdidas en un gran conjunto de datos. El orden del polinomio puede determinarse por el número de fluctuaciones en los datos o por el número de curvas (colinas y valles) que aparecen en la curva. Una línea de tendencia polinomial de orden 2 generalmente tiene sólo una colina o valle. El orden 3 generalmente tiene una o dos colinas o valles. La orden 4 generalmente tiene hasta tres. El siguiente ejemplo muestra una línea de tendencia polinomial de Orden 2 (una colina) para ilustrar la relación entre la velocidad y el consumo de gasolina. Observe que el valor R-cuadrado es 0.9474, que es un buen ajuste de la línea a los datos. Una línea de tendencia de potencia es una línea curva que se utiliza mejor con conjuntos de datos que comparan las mediciones que aumentan a una velocidad específica, por ejemplo, la aceleración de un coche de carreras a intervalos de un segundo. No puede crear una línea de tendencia de energía si sus datos contienen valores cero o negativos. En el ejemplo siguiente, los datos de aceleración se muestran trazando la distancia en metros por segundos. La línea de tendencia de potencia demuestra claramente la creciente aceleración. Tenga en cuenta que el valor R-cuadrado es 0.9923, que es un ajuste casi perfecto de la línea a los datos. Una línea de tendencia exponencial es una línea curva que es más útil cuando los valores de los datos suben o bajan a tasas cada vez más altas. No puede crear una línea de tendencia exponencial si sus datos contienen valores cero o negativos. En el ejemplo siguiente, se utiliza una línea de tendencia exponencial para ilustrar la cantidad decreciente de carbono 14 en un objeto a medida que envejece. Tenga en cuenta que el valor R-cuadrado es 1, lo que significa que la línea se ajusta perfectamente a los datos. Una línea de tendencia de media móvil suaviza las fluctuaciones de los datos para mostrar un patrón o una tendencia más claramente. Una línea de tendencia de media móvil utiliza un número específico de puntos de datos (establecidos por la opción Período), los promedia y utiliza el valor promedio como un punto en la línea de tendencia. Si Period se establece en 2, por ejemplo, el promedio de los dos primeros puntos de datos se utiliza como el primer punto de la línea de tendencia de media móvil. El promedio de los puntos de datos segundo y tercero se utiliza como el segundo punto en la línea de tendencia, y así sucesivamente. En el ejemplo siguiente, una línea de tendencia de media móvil muestra un patrón en el número de viviendas vendidas en un período de 26 semanas.

No comments:

Post a Comment